XXXIII CONGRESSO NAZIONALE AIRO



BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

#### Il paziente anziano: personalizzazione del trattamento

#### **NSCLC localmente avanzato**

Matteo Sepulcri UOC Radioterapia IOV-IRCCS Padova



## The Silver Tsunami





Fonte: Istat, Popolazione per sesso, età e stato civile e Previsioni della popolazione e delle famiglie, base 1.1.2021, scenario nazionale ad hoc

2042

2022

Over 65: 2022 - 14 milions (24%) 2042 - 19 milions (34%)



### Lung cancer incidence rates



According to the most recent statistics in the US (SEER 2016–2020), the median age at diagnosis is **71** years

Data source(s): SEER Incidence Data, November 2022



### Lung cancer incidence rates



Proportion of patients aged >65 years with selected tumour (%)

#### More then 40% of lung cancer patients over 70 years

Yancik R, Cancer



### Stage distribution by age



#### Locally advanced in about 20% of patients

#### BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Data source(s): SEER Incidence Data, November 2022



#### By pathology...





By stage...



#### Single vs Multi-Station N2







#### ALL STAGE IIIA

De Leyn P, JTO 2009



#### By stage and survival rates...

| TABLE I THE TIM | w staging system, version o, dem | unstrating th | le neterogen | eny of stage |       |       |                |                      |
|-----------------|----------------------------------|---------------|--------------|--------------|-------|-------|----------------|----------------------|
| T/M and label   | Description                      | NO            | N1           | N2           | N3    |       |                |                      |
| T1              |                                  |               |              | _            |       |       | Eve            |                      |
| T1a             | ≼1 cm                            | I A1          | II B         | III A        | III B |       | 5-yea          | 15 05                |
| T1b             | >1-2 cm                          | I A2          | II B         | III A        | III B |       |                |                      |
| T1c             | >2-3 cm                          | I A3          | II B         | III A        | III B |       | Clinical stars | Path also include as |
| T2              |                                  |               |              |              |       |       | Clinical stage | Pathological stage   |
| T2a             | Central, visceral and pleura     | IB            | II B         | III A        | III B |       |                |                      |
|                 | >3-4 m                           | IB            | II B         | III A        | III B | I A1  | 92             | 90                   |
| T2b             | >4-5 cm                          | II A          | II B         | III A        | III B | I A2  | 83             | 85                   |
| T3              | >5–7 cm                          | II B          | III A        | III B        | III C | 1 43  | 77             | 80                   |
|                 | Invasive                         | II B          | III A        | III B        | III C | 1 8   | 10             | 70                   |
|                 | Satellite                        | II B          | III A        | III B        | III C | IB    | 68             | 13                   |
| T4              | >7 cm                            |               | III A        | III B        | III C |       | 60             | 65                   |
|                 | Invasive                         |               | III A        | III B        | III C | II B  | 53             | 56                   |
|                 | Ipsilateral nodes                | III A         | III A        | III B        | III C |       | 36             | 41                   |
| M1              |                                  |               |              |              |       | III B | 24             | 24                   |
| M1a             | Contralateral nodes              | IV A          | IV A         | IV A         | IV A  | III D | 20             | 10                   |
|                 | Pleura disseminated              | IV A          | IV A         | IV A         | IV A  |       | 13             | 12                   |
| M1b             | Single                           | IV A          | IV A         | IV A         | IV A  | IV A  | 10             |                      |
| M1c             | Multi                            | IV B          | IV B         | IV B         | IV B  | IV B  | 0              |                      |

Detterbeck FC, Chest 2017





#### By patient...



Performance status Co-morbidities Cardio-pulmonary function Compliance and family support





### **Geriatric Assessement**

#### **Functional Status**

Performance status (PS) Activities of daily living (ADL) Instrumental activities of daily living (IADL)

#### Comorbidity

Comorbidity scales (Charlson; CIRS)

#### QoL

Disease-specific questionnaires

#### Cognitive

Folstein Minimental Status

#### Emotions

Geriatric Depression Scale (GDS) Mini Mental State Examination MOCA

Social support network

Polypharmacy

Nutrition

Mini Nutritional Assessment



#### FIT VULNERABLE/FRAIL UNFIT



## **Comprehensive Geriatric Assessement**

Use of a Comprehensive Geriatric Assessment for the Management of Elderly Patients With Advanced Non–Small-Cell Lung Cancer: The Phase III Randomized ESOGIA-GFPC-GECP 08-02 Study

Romain Corre, Laurent Greillier, Hervé Le Caër, Clarisse Audigier-Valette, Nathalie Baize, Henri Bérard, Lionel Falchero, Isabelle Monnet, Eric Dansin, Alain Vergnenègre, Marie Marcq, Chantal Decroisette, Jean-Bernard Auliac, Suzanna Bota, Régine Lamy, Bartomeu Massuti, Cécile Dujon, Maurice Pérol, Jean-Pierre Daurès, Renaud Descourt, Hervé Léna, Carine Plassot, and Christos Chouaïd



In elderly patients with advanced NSCLC, treatment allocation on the basis of CGA failed to improve the TFFS or OS but slightly reduced treatment toxicity

Corre R, et al., J Clin Oncol 2016



## **Comprehensive Geriatric Assessement**

# **W L** Evaluation of geriatric assessment and management on the toxic effects of cancer treatment (GAP70+): a cluster-randomised study

Supriya G Mohile, Mostafa R Mohamed, Huiwen Xu, Eva Culakova, Kah Poh Loh, Allison Magnuson, Marie A Flannery, Spencer Obrecht, Nikesha Gilmore, Erika Ramsdale, Richard F Dunne, Tanya Wildes, Sandy Plumb, Amita Patil, Megan Wells, Lisa Lowenstein, Michelle Janelsins, Karen Mustian, Judith O Hopkins, Jeffrey Berenberg, Navin Anthony, William Dale (Lancet 2021)

#### Prospective randomized trial:

718 patients Age ≥ 70 years (mean 77) At least one alterated geriatric parameter Treated with chemotherapy

Primary outcome: G3-G4 toxicity Secondary outcomes: treatment completion, quality of life CGA vs no CGA



## **Comprehensive Geriatric Assessement**



A geriatric assessment intervention for older patients with advanced cancer reduced serious toxic effects from cancer treatment. No difference in OS.



## Screening Test: G8 questionnaire

|       | Items                                                                     | Possible answers (score)                                |
|-------|---------------------------------------------------------------------------|---------------------------------------------------------|
|       | Has food intake declined over the past 3                                  | 0 : severe decrease in food intake                      |
| A     | months due to loss of appetite, digestive problems, chewing or swallowing | 1 : moderate decrease in food intake                    |
|       | difficulties?                                                             | 2 : no decrease in food intake                          |
|       |                                                                           | 0 : weight loss > 3 kg                                  |
| D     | Weight loss during the last 3 months                                      | 1 : does not know                                       |
| В     | weight loss during the last 5 months                                      | 2 : weight loss between 1 and 3 kgs                     |
|       |                                                                           | 3 : no weight loss                                      |
|       |                                                                           | 0 : bed or chair bound                                  |
| С     | Mobility                                                                  | 1 : able to get out of bed/chair but does<br>not go out |
|       |                                                                           | 2 : goes out                                            |
|       |                                                                           | 0 : severe dementia or depression                       |
| E Net | Neuropsychological problems                                               | 1 : mild dementia or depression                         |
|       |                                                                           | 2 : no psychological problems                           |
|       |                                                                           | 0 : BMI < 19                                            |
| E     | Body Mass Index (BMI (weight in kg) /                                     | 1 : BMI = 19 to BMI < 21                                |
| •     | (height in m <sup>2</sup> )                                               | 2 : BMI = 21 to BMI < 23                                |
|       |                                                                           | 3 : BMI = 23 and > 23                                   |
| н     | Takes more than 3 medications per day                                     | 0 : yes                                                 |
|       | · · · · · · · · · · · · · · · · · · ·                                     | 1 : no                                                  |
|       | In comparison with other people of the                                    | U : not as good                                         |
| Р     | same age, how does the patient consider                                   | 0.5 : does not know                                     |
|       | his/her health status?                                                    | 1 : as good                                             |
|       | 4.00                                                                      |                                                         |
|       | Age                                                                       | 1,00.05                                                 |
|       |                                                                           | 2: < 90                                                 |
|       | TOTAL SCORE                                                               | 0 - 17                                                  |
|       | TOTAL SCORE                                                               | 0 - 17                                                  |

#### If G8 total score > 14: Patient fit, no frailty risk



#### **Treatment evolution pre-PACIFIC**



Sequential CT-RT > RT → + 3% OS at 2y and 2% at
5y (HR 0.90) [NSCLC Collaborative Group, BMJ 1995]

#### Girard N, ESMO 2021





## Meta-analysis CT-RT vs RT (elderly)

Chemoradiotherapy versus radiotherapy alone in elderly patients with stage III non-small cell lung cancer: A systematic review and meta-analysis

David E. Dawe<sup>a,\*</sup>, David Christiansen<sup>a</sup>, Anand Swaminath<sup>d</sup>, Peter M. Ellis<sup>d</sup>, Janet Rothney<sup>e</sup>, Rasheda Rabbani<sup>c</sup>, Ahmed M. Abou-Setta<sup>b,c</sup>, Ryan Zarychanski<sup>a,b,c</sup>, Salaheddin M. Mahmud<sup>b,c</sup>



Dawe D, Lung Cancer 2016



### **Treatment evolution pre-PACIFIC**



Sequential CT-RT > RT → + 3% OS at 2y and 2% at
5y (HR 0.90) [NSCLC Collaborative Group, BMJ 1995]

• Concurrent CT-RT > Sequential  $\rightarrow$  + 5.7% OS at 3y

and + 4.5% at 5y (HR 0.84) [Auperin et al, JCO 2010]

- Platinum-based CT 4 cycles
- No OS benefit from high dose RT [Bradley, Lancet 2015]
- $\circ$   $\quad$  No OS benefit integrating with biological agents
- No consolidation or maintenance CT after CT/RT

Concurrent CT/RT: 3-year OS about 30%

*Fit patients with PS 0 or 1, age < 70 or 75 years, without important comorbidities* [less than 50% of patients with unresectable stage III are eligible]





### Meta-analysis CT-RT conc vs seq



| Tab                | le 2. Patient Ch   | aracteristics         |                |                  |
|--------------------|--------------------|-----------------------|----------------|------------------|
|                    | Conco<br>A<br>(n = | omitant<br>rm<br>603) | Sequen<br>(n = | tial Arm<br>602) |
| Characteristic     | No.                | %                     | No.            | %                |
| Male sex           | 457                | 76                    | 464            | 77               |
| Median age, years  | 6                  | 1.0                   | 62             | 2.4              |
| Range              | 33                 | -79                   | 33             | -82              |
| < 60               | 273                | 45                    | 246            | 41               |
| 60-64              | 114                | 19                    | 111            | 18               |
| 65-69              | 140                | 23                    | 130            | 22               |
| ≥ 70               | 76                 | 13                    | 113            | 19               |
| Unknown            | 0                  |                       | 2              |                  |
| Performance status |                    |                       |                |                  |
| 0                  | 309                | 52                    | 297            | 50               |
| 1                  | 278                | 46                    | 293            | 49               |
| 2                  | 13                 | 2                     | 9              | 1                |
| Unknown            | 3                  |                       | 3              |                  |

Auperin A, JCO 2010



### Sequential CT-RT

Annals of Oncology 26: 278–288, 2015 doi:10.1093/annonc/mdu229 Published online 18 June 2014

## Concurrent systemic therapy with radiotherapy for the treatment of poor-risk patients with unresectable stage III non-small-cell lung cancer: a review of the literature

F. Cardenal<sup>1\*</sup>, E. Nadal<sup>2</sup>, M. Jové<sup>1</sup> & C. Faivre-Finn<sup>3</sup>

- Only two phase III studies specifically including poor-risk patients have been published.
- There is an unmet need to develop welldesigned clinical trials with tolerable combinations of systemic therapy and radiotherapy specifically tailored to this population.
- Such trials should incorporate careful comorbidity measurement and, in older adults, a validated geriatric assessment.



Article

#### Elderly Patients with Locally Advanced and Unresectable Non-Small-Cell Lung Cancer May Benefit from Sequential Chemoradiotherapy

Magdalena Zaborowska-Szmit<sup>1</sup>, Marta Olszyna-Serementa<sup>1</sup>, Dariusz M. Kowalski<sup>1</sup>, Sebastian Szmit<sup>2,\*</sup> and Maciej Krzakowski<sup>1</sup> Table 7. The key studies cited in the discussion.

| First Author of the Study | Design of the Study                                                                                                                                               | Main Result or Conclusion                                                                                                                                                                                                        |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atagi S. [9]              | Patients: 71 years of age or<br>older.<br>Randomization: radiotherapy<br>alone vs. chemoradiotherapy<br>(concurrent use of<br>carboplatin)                        | Terminated due to treatment-related deaths.                                                                                                                                                                                      |
| Stinchcombe T.E. [10]     | 16 phase II or III trials of<br>concurrent<br>chemoradiotherapy                                                                                                   | Elderly patients under<br>concurrent chemoradiotherapy<br>had unbeneficial OS, higher rate<br>of toxicity (including death).                                                                                                     |
| Miller E.D. [11]          | Patients: elderly (≥70 years<br>old).<br>Comparative effectiveness<br>study of radiation therapy<br>versus chemoradiation                                         | Sequential chemotherapy and<br>radiation resulted in a 9%<br>mortality reduction in<br>comparison to concurrent<br>treatment.                                                                                                    |
| Lee J.H. [22]             | Patients: aged 70 years or<br>more.<br>Treatment: radical<br>radiotherapy with or without<br>chemotherapy                                                         | Simplified comorbidity score<br>(SCS) was the independent<br>prognostic factor for OS.<br>Chemoradiotherapy was<br>superior to radiotherapy in the<br>fit elderly with SCS < 10.                                                 |
| Atagi S. [32]             | Patients older than 70 years.<br>Randomized, controlled,<br>phase 3 trial:<br>chemoradiotherapy<br>(concurrent low-dose<br>carboplatin) or radiotherapy<br>alone, | Some elderly should be<br>considered for<br>chemoradiotherapy due to<br>benefit of decreased mortality<br>(HR = 0.68, p = 0.0179).<br>Chemoradiotherapy was<br>associated with more rate of<br>grade 3-4 hematological toxicity. |



MDP

## Elderly population in RCT

| Clinical study                | Phase | Setting                                                  | Regimens                                                                                                 | Main results                                                                                | Overall<br>population (n) | Elderly<br>population (n, %) |
|-------------------------------|-------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|------------------------------|
| Albain et al, 2009<br>[5]     | 111   | Curative treatment<br>of stage IIIA NSCLC                | Chemo-RT induction followed by<br>surgery versus definitive Chemo-RT                                     | PFS benefit for surgery arm                                                                 | 429                       | 63 (15.9)*                   |
| Eberhardt et al,<br>2015 [20] | III   | Curative treatment<br>of stage IIIA-B<br>NSCLC           | Chemo-RT induction followed by<br>surgery versus definitive Chemo-RT                                     | Equal PFS and OS<br>between arms                                                            | 246                       | 116 (47)**                   |
| Pless et al, 2015<br>[34]     | III   | Curative treatment<br>of stage IIIA (N2)<br>NSCLC        | Chemo-RT induction followed by<br>surgery versus Neoadjuvant<br>Chemotherapy followed by surgery         | Radiotherapy did not add<br>any benefit to induction<br>chemotherapy followed<br>by surgery | 232                       | NA                           |
| Schild et al, 2003<br>[48]    | 111   | Curative treatment<br>of unresectable<br>stage III NSCLC | Chemotherapy (Etoposide plus<br>Cisplatin) and<br>either RT once daily or split-course<br>RT twice daily | Elderly patients have<br>survival rates equivalent<br>to younger individuals                | 244                       | 63 (25.8)*                   |
| Antonia et al,<br>2018 [8]    | 111   | Curative treatment<br>of unresectable<br>stage III NSCLC | Definitive Chemo-RT followed by durvalumab for 1 year or not                                             | PFS and OS benefit for the durvalumab arm                                                   | 713                       | 322 (45.2)***                |

\* over 70 years of age; \*\* over 60 years of age; \*\*\* over 65 years of age



### **PACIFIC: 5-years update**



the groups (3.4% durvalumab vs 2.6% placebo)

No. at risl Durvalumab 476 

01 3



Time from randomization (months)

27 26 

137 128 119 110

## PACIFIC: prognostic factors for OS

| Age, years                                       | ≥ 65                      | 210/322 (65.2) | < 65        | 209/391 (53.5) | 1.30 (1.06 to 1.59) <sup>a</sup> |
|--------------------------------------------------|---------------------------|----------------|-------------|----------------|----------------------------------|
| Disease stage <sup>b</sup>                       | IIIB                      | 182/319 (57.1) | IIIA        | 227/377 (60.2) | 1.03 (0.84 to 1.26)              |
| Best response to prior<br>treatment <sup>c</sup> | CR/PR                     | 195/365 (53.4) | SD          | 216/338 (63.9) | 0.88 (0.72 to 1.08)              |
| Tumor histologic type                            | Squamous                  | 205/326 (62.9) | Nonsquamous | 214/387 (55.3) | 1.28 (1.04 to 1.58) <sup>a</sup> |
| WHO PS                                           | 1 <sup>d</sup>            | 233/365 (63.8) | 0           | 186/348 (53.4) | 1.23 (1.01 to 1.50) <sup>a</sup> |
| Prior platinum CT agent <sup>e</sup>             | Cisplatin                 | 215/395 (54.4) | Carboplatin | 190/301 (63.1) | 0.84 (0.69 to 1.03)              |
| Race                                             | Asian                     | 95/192 (49.5)  | White       | 310/494 (62.8) | 0.63 (0.49 to 0.81) <sup>a</sup> |
|                                                  | Black or African American | 7/14 (50.0)    |             |                | 0.81 (0.38 to 1.73)              |
|                                                  | Other                     | 7/13 (53.8)    |             |                | 0.91 (0.41 to 1.99)              |
| Sex                                              | Male                      | 304/500 (60.8) | Female      | 115/213 (54.0) | 1.27 (1.01 to 1.61) <sup>a</sup> |
| Smoking status                                   | Smoker                    | 384/649 (59.2) | Nonsmoker   | 35/64 (54.7)   | 0.83 (0.56 to 1.22)              |
| Time from CRT to random assignment, days         | ≥ 14                      | 312/531 (58.8) | < 14        | 107/182 (58.8) | 0.97 (0.77 to 1.22)              |
| EGFR or ALK aberration                           | Positive <sup>g</sup>     | 25/43 (58.1)   | Negative    | 275/482 (57.1) | 1.06 (0.69 to 1.64)              |
| status                                           | Unknown                   | 119/188 (63.3) |             |                | 0.95 (0.73 to 1.23)              |
| PD-L1 expression level                           | $TC \ge 25\%$             | 78/159 (49.1)  | TC < 25%    | 175/292 (59.9) | 0.82 (0.62 to 1.07)              |
|                                                  | Unknown                   | 166/262 (63.4) |             |                | 1.19 (0.92 to 1.54)              |

Spigel D et al, ASCO 2021



### **PACIFIC: elderly patients**

Durvalumab After Concurrent Chemoradiotherapy in Elderly Patients With Unresectable Stage III Non–Small–Cell Lung Cancer (PACIFIC)

Exploratory analysis, between-treatment comparisons of PFS, OS, TTDM, ORR, the incidence of new lesions, post discontinuation disease-related anticancer therapy, safety, and PROs were performed in subgroups of patients aged ≥70 and <70 years at study baseline (a post-hoc age threshold)



Socinski et al. Clinical Lung Cancer 2021



#### **PACIFIC: elderly patients**





Socinski et al. Clinical Lung Cancer 2021



## **PACIFIC: elderly patients**

#### Table 3Adverse Events in Patients Aged $\geq$ 70 Years and <70 Years</th>

|                                                | Aged $\geq$ 70           | ) Years            | Aged <70 Years           |                     |  |
|------------------------------------------------|--------------------------|--------------------|--------------------------|---------------------|--|
| AE Category*                                   | Durvalumab ( $N = 101$ ) | Placebo (N $=$ 55) | Durvalumab ( $N = 374$ ) | Placebo (N $=$ 179) |  |
| Anv-grade all-causality AEs, n (%)             | 100 (99.0)               | 53 (96.4)          | 360 (96.3)               | 169 (94.4)          |  |
| Grade 3/4                                      | 42 (41.6)                | 14 (25.5)          | 113 (30.2)               | 52 (29.1)           |  |
| Outcome of death                               | 11 (10.9)                | 7 (12.7)           | 10 (2.7)                 | 8 (4.5)             |  |
| Leading to discontinuation                     | 22 (21.8)                | 9 (16.4)           | 51 (13.6)                | 14 (7.8)            |  |
| Serious AEs, n (%)                             | 43 (42.6)                | 14 (25.5)          | 95 (25.4)                | 40 (22.3)           |  |
| Immune-mediated AEs, n (%) <sup>a</sup>        | 20 (19.8)                | 8 (14.5)           | 96 (25.7)                | 11 (6.1)            |  |
| AEs leading to dose delay, n (%)               | 51 (50.5)                | 16 (29.1)          | 152 (40.6)               | 56 (31.3)           |  |
| Pneumonitis/radiation pneumonitis <sup>b</sup> |                          |                    |                          |                     |  |
| Any grade <sup>c</sup>                         | 33 (32.7)                | 18 (32.7)          | 128 (34.2)               | 40 (22.3)           |  |
| Grade 1                                        | 10 (9.9)                 | 6 (10.9)           | 57 (15.2)                | 19 (10.6)           |  |
| Grade 2                                        | 13 (12.9)                | 5 (9.1)            | 59 (15.8)                | 17 (9.5)            |  |
| Grade 3                                        | 8 (7.9)                  | 3 (5.5)            | 9 (2.4)                  | 3 (1.7)             |  |
| Grade 5                                        | 2 (2.0)                  | 4 (7.3)            | 3 (<1)                   | 1 (<1)              |  |
| Leading to discontinuation                     | 9 (8.9)                  | 5 (9.1)            | 21 (5.6)                 | 5 (2.8)             |  |

Socinski et al. Clinical Lung Cancer 2021



#### **Radiation technique**

| Table 3. Outcomes at 2 Years by Radiation Therapy Technique |                     |                     |      |  |  |
|-------------------------------------------------------------|---------------------|---------------------|------|--|--|
| Outcome                                                     | 3D-CRT, % (95% CI)  | IMRT, % (95% CI)    | Р    |  |  |
| Overall survival                                            | 49.4 (42.9 to 55.5) | 53.2 (46.4 to 59.6) | .597 |  |  |
| Progression-free survival                                   | 27.0 (21.5 to 32.7) | 25.2 (19.7 to 31.1) | .595 |  |  |
| Local failure                                               | 37.1 (31.0 to 43.1) | 30.8 (24.8 to 36.9) | .498 |  |  |
| Distant metastases                                          | 49.6 (43.2 to 55.8) | 45.9 (39.2 to 52.3) | .661 |  |  |

IMRT vs 3D-CRT

Table 4. CTCAE ≥ Grade 3 Radiation-Related Adverse Events of 3D-CRT and IMRT

| ≥ Grade 3 Toxicity    | 3D-CRT, % (No.) | IMRT, % (No.) | Р    |
|-----------------------|-----------------|---------------|------|
| No. of patients       | 254             | 228           |      |
| Pneumonitis           | 7.9 (20)        | 3.5 (8)       | .039 |
| Esophagitis/dysphagia | 15.4 (39)       | 13.2 (30)     | .004 |
| Weight loss           | 28(7)           | 2.9.(9)       | .419 |
| Cardiovascular        | 8.3 (21)        | 4.8 (11)      | .131 |
|                       |                 |               |      |

IMRT was associated with lower rates of severe pneumonitis and cardiac doses in clinical trial RTOG 0617, which supports routine use of IMRT for locally advanced NSCLC.

Chun SG, JCO 2017



#### **Radiation technique**



ORIGINAL RESEARCH published: 31 May 2022 doi: 10.3389/fonc.2022.835844

#### Impact of Introducing Intensity Modulated Radiotherapy on Curative Intent Radiotherapy and Survival for Lung Cancer

Isabella Fornacon-Wood<sup>1†</sup>, Clara Chan<sup>2+†</sup>, Neil Bayman<sup>2</sup>, Kathryn Banfill<sup>1,2</sup>, Joanna Coote<sup>2</sup>, Alex Garbett<sup>2</sup>, Margaret Harris<sup>2</sup>, Andrew Hudson<sup>2</sup>, Jason Kennedy<sup>3</sup>, Laura Pemberton<sup>2</sup>, Ahmed Salem<sup>1,2</sup>, Hamid Sheikh<sup>2</sup>, Philip Whitehurst<sup>4</sup>, David Woolf<sup>2</sup>, Gareth Price<sup>1,4‡</sup> and Corinne Faivre-Finn<sup>1,2‡</sup>



🗞 cancers



Article

#### The Multidisciplinary Approach in Stage III Non-Small Cell Lung Cancer over Ten Years: From Radiation Therapy Optimisation to Innovative Systemic Treatments

Alessandra Ferro <sup>1</sup><sup>(0)</sup>, Matteo Sepulcri <sup>2</sup><sup>(0)</sup>, Marco Schiavon <sup>3</sup>, Elena Scagliori <sup>4</sup>, Edoardo Mancin <sup>5</sup>, Francesca Lunardi <sup>6</sup><sup>(0)</sup>, Gisella Gennaro <sup>7</sup>, Stefano Frega <sup>1</sup>, Alessandro Dal Maso <sup>1</sup><sup>(0)</sup>, Laura Bonanno <sup>1</sup>, Chiara Paronetto <sup>2</sup>, Francesca Caumo <sup>4</sup>, Fiorella Calabrese <sup>6</sup>, Federico Rea <sup>3</sup>, Valentina Guarneri <sup>1,5,†</sup> and Giulia Pasello <sup>1,5,\*,†</sup>





## **Esophageal sparing**

JAMA Oncology | Brief Report

Assessment of a Contralateral Esophagus–Sparing Technique in Locally Advanced Lung Cancer Treated With High-Dose Chemoradiation A Phase 1 Nonrandomized Clinical Trial





CE-sparing technique was associated with reduced risk of esophagitis among patients treated uniformly with chemo-radiotherapy (up to 70 Gy), with no grade 3 or higher esophagitis despite tumor within 1 cm



## **Clinical practice**

Treatment strategies for locally advanced non-small cell lung cancer in elderly patients: Translating scientific evidence into clinical practice

Laura Bonanno $^{a,\,\pm,\,1}$ , Ilaria Attili $^{b,\,1}$ , Alberto Pavan $^a,$  Matteo Sepulcri $^c,$  Giulia Pasello $^{a,\,d},$ Federico Rea $^e,$ Valentina Guarneri $^{a,\,d},$ PierFranco Conte $^{a,\,d}$ 



- Over 70 ys: Geriatric Assessment
- Evaluate FEV1 and DLCO
- Chemo: weekly carbo-paclitaxel
- RT dose: 60 Gy in 30 fractions (VMAT/IMRT)
- Rapid recognition and management of acute esophagitis
- Pay attention to pneumonitis



BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

## **Future perspectives**



A phase II study of daily carboplatin plus irradiation followed by durvalumab for stage III non-small cell lung cancer patients with PS 2 up to 74 years old and patients with PS 0 or 1 from 75 years: NEJ039A

Chemo: Daily, low-dose carboplatin (30 mg/m2 in a 30-min infusion) 1 h before RT for the first 20 fractions.

Radiotherapy: 60 Gy in 30 daily fractions. Durvalumab at a dose of 10 mg/kg/body intravenously every 2 weeks for up to 12 months after CT-RT.

Kaira K et al. BMC Cancer (2020) 20:961



## **Future perspectives**





## New data: PACIFIC-6



#### PACIFIC-6: Phase 2, Open-label, Multicentre, International Trial

- Incidence of AEs (CTCAE v4.03), and the ORR, were summarised with descriptive statistics
- PFS and OS were analysed by Kaplan-Meier method (to estimate medians, 12-month rates and associated 95% CIs)

AE, adverse event, CI, confidence interval; CT, chemotherapy, CTOAE v4.03, Common Terminology Oriteria for Adverse Events Version 4.03, DoR, duration of response; IV, intravenous; ORR, objective response rate: OS, overall survival; PFS, progression-free survival; PRAE, AE possibly related to study treatment; PS, performance status; Q4W, every 4 weeks; RECIST, Response Evaluation Oriteria in Solid Tumors; sCRT, sequential chemoradiotherapy; TRAE, treatment-related AE; WHO/ECOG, World Health Organization/Eastern Cooperative Oncology Group D

PALAZZO DEI CONGRESSI

BOLOGNA, 27-29 OTTOBRE 2023

\*Defined as ≥2 cycles of platinum-based CT before RT with ≤6 weeks interval between the last dose of CT and the start of RT. Patients who received no more than 1 cycle of overlapping platinum-based CT and RT were also elibile. \*0r until disease progression, alternative anticancer therapy, unacceptable loxicity, withdrawal of consent, or another discontinuation criterion is met. \*As reported by the investigator and alternatively referred to as PRAEs in the case report form. MADRID SPAIN 20-24 OCTOBER 2023

Median treatment duration:

Pneumonitis (17% any grade,

Median PFS: 13.1 m (7.4-19.9)

Median OS: 39 m (30.6-x)

41 weeks (4-108)

1.7% G3/4

•

3-yr OS: 56.5%

Tox G3/4 (<6 m): 4.3%



### New data: DUART



Screening -28 days to -1 day



### New data: DUART

Patients characteristics (N 102)

Median Age: Cohort A: 78 years (43-87) Cohort B: 80 years (56-87)

ECOG PS 1: 73.3% A: 70.7% B: 76.7%

#### **AEs Summary**

- Grade 3/4 PRAEs\* within 6 months (primary endpoint): 9.8% (95% CI: 4.8–17.3)<sup>†</sup>
  - Cohort A: 11.9% (95% CI: 4.9–22.9)<sup>†</sup>
  - Cohort B: 7.0% (95% CI:1.5-19.1)<sup>†</sup>
- 9.8% had PRAEs leading to discontinuation, most commonly pneumonitis (3.9% of all patients)

|                               | All-cause AEs                                                                 |                                                                                                          |                                          |                                 | PRAEs*                                                                                                                                                   |                                                                                                                                                                 |  |
|-------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                               | Cohort A<br>(standard RT; n=59)                                               | Cohort B<br>(palliative RT; n=43)                                                                        | Total<br>(N=102)                         | Cohort A<br>(standard RT; n=59) | Cohort B<br>(palliative RT; n=43)                                                                                                                        | Total<br>(N=102)                                                                                                                                                |  |
| Any AE, n (%)                 | 56 (94.9)                                                                     | 43 (100)                                                                                                 | 99 (97.1)                                | 40 (67.8)                       | 21 (48.8)                                                                                                                                                | 61 (59.8)                                                                                                                                                       |  |
| Grade 3/4<br>Within 6 months  | 25 (42.4)                                                                     | 15 (34.9)<br>—                                                                                           | 40 (39.2)                                | 9 (15.3)<br><b>7 (11.9)</b>     | 3 (7.0)<br>3 (7.0)                                                                                                                                       | 12 (11.8)<br><b>10 (9.8)</b>                                                                                                                                    |  |
| SAE                           | 25 (42.4)                                                                     | 13 (30.2)                                                                                                | 38 (37.3)                                | 7 (11.9)                        | 2 (4.7)                                                                                                                                                  | 9 (8.8)                                                                                                                                                         |  |
| Outcome of death <sup>‡</sup> | 5 (8.5)                                                                       | 2 (4.7)                                                                                                  | 7 (6.9)                                  | 1 (1.7)                         | 0                                                                                                                                                        | 1 (1.0)                                                                                                                                                         |  |
| Leading to Tx discontinuation | 11 (18.6)                                                                     | 7 (16.3)                                                                                                 | 18 (17.6)                                | 7 (11.9)                        | 3 (7.0)                                                                                                                                                  | 10 (9.8)                                                                                                                                                        |  |
| Leading to Tx interruption    | 31 (52.5)                                                                     | 17 (39.5)                                                                                                | 48 (47.1)                                | 8 (13.6)                        | 5 (11.6)                                                                                                                                                 | 13 (12.7)                                                                                                                                                       |  |
| AESI                          | 26 (44.1)                                                                     | 15 (34.9)                                                                                                | 41 (40.2)                                | 21 (35.6)                       | 9 (20.9)                                                                                                                                                 | 30 (29.4)                                                                                                                                                       |  |
| imAE                          | 23 (39.0)                                                                     | 13 (30.2)                                                                                                | 36 (35.3)                                | 22 (37.3)                       | 12 (27.9)                                                                                                                                                | 34 (33.3)                                                                                                                                                       |  |
| MADRID ESMO                   | AE, adverse event; AESI, adverse even<br>PRAE, adverse event possibly related | t of special interest; CI, confidence interval; imA<br>to treatment; SAE, serious adverse event; Tx, tre | E, immune-mediated adverse eve<br>atment | ont,                            | *PRAE is alternative nomenclature for a l<br>to align with the case report form us<br><sup>1</sup> Cl calculate<br><sup>1</sup> PRAE with outcome of dea | treatment-related AE and is used here<br>ed to collect investigators' responses.<br>d using the Clopper-Pearson method.<br>th was pneumonitis (n=1) in Cohot A. |  |



#### New data: DUART

| Objective Response Rate                         |                                    |                                   |                                   |
|-------------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|
| Endpoint                                        | Cohort A<br>(standard RT; n=59)    | Cohort B<br>(palliative RT; n=43) | Total<br>(N=102)                  |
| Confirmed ORR*, % (95% CI)†                     | 28.8 (17.8-42.1)                   | 23.3 (11.8–38.6)                  | 26.5 (18.2–36.1)                  |
| Response status, n (%)                          |                                    |                                   |                                   |
| Complete response                               | 0                                  | 0                                 | 0                                 |
| Partial response                                | 17 (28.8)                          | 10 (23.3)                         | 27 (26.5)                         |
| Stable disease                                  | 25 (42.4)                          | 22 (51.2)                         | 47 (46.1)                         |
| Progression<br>RECIST v1.1 progression<br>Death | 10 (16.9)<br>6 (10.2)<br>4 (6.8)   | 6 (14.0)<br>5 (11.6)<br>1 (2.3)   | 16 (15.7)<br>11 (10.8)<br>5 (4.9) |
| Not evaluable                                   | 7 (11.9)                           | 5 (11.6)                          | 12 (11.8)                         |
| • The confirmed ORR was 26.5% a                 | nd 46 1% of natients had stable di | isease                            |                                   |

Median OS: 15.9 m (better than historical data of RT alone.

RT plus consolidation IT a novel option for this common subset of elderly and frailty patients



# Take home messages

- Patient clinical evaluation (carefully!)
- Identify frail patients
- Management of toxicities
- Radical modern RT improves outcomes



- Immunotherapy feasible and effective even in elderly/frailty patients
- Personalize the treatment in order to maximise the risk/benefit ratio



#### Thank you for your attention

#### matteo.sepulcri@iov.veneto.it



